https://nova.newcastle.edu.au/vital/access/ /manager/Index ${session.getAttribute("locale")} 5 Engineering catalytic active sites on cobalt oxide surface for enhanced oxygen electrocatalysis https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:44543 Wed 09 Nov 2022 10:23:20 AEDT ]]> Pyrite-type CoS₂ nanoparticles supported on nitrogen-doped graphene for enhanced water splitting https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:35392 −2, and the corresponding Tafel slopes of 51.8 and 108mV dec−1, respectively. Otherwise, the CoS₂@N-GN hybrid also presents superior long-term catalytic durability. Moreover, an alkaline water splitting device assembled by CoS₂@N-GN as both anode and cathode can achieve a low cell voltage of 1.53 V at 60◦C with a high faraday efficiency of 100% for overall water splitting. The tremendously enhanced electrochemical behaviors arise from favorable factors including small sized, homogenously dispersed novel CoS₂ nanocrystals and coupling interaction with the underlying conductive nitrogen-doped graphene, which would provide insight into the rational design of transition metal chalcogenides for highly efficient and durable hydrogen and oxygen-involved electrocatalysis.]]> Tue 23 Jul 2019 15:27:22 AEST ]]> Metal-Air Batteries: From Static to Flow System https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:43276 Mon 29 Jan 2024 18:05:32 AEDT ]]> Air-stable phosphorus-doped molybdenum nitride for enhanced elctrocatalytic hydrogen evolution https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:35061 2, respectively, in 0.5 M H2SO4 solution with a small Tafel slope of 43 mV/dec. Thus it outperforms many of the state-of-art molybdenum-based hydrogen evolution catalysts reported to date.]]> Mon 17 Jun 2019 12:09:40 AEST ]]> Ferroelectric polarization promoted bulk charge separation for highly efficient CO₂ photoreduction of SrBi₄Ti₄O₁₅ https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:34851 4Ti4O15 as a robust photocatalyst for efficient CO2 reduction. In the absence of co-catalysts and sacrificial agents, the annealed SrBi4Ti4O15 nanosheets with the strongest ferroelectricity cast a prominent photocatalytic CO₂ reduction activity for CH₄ evolution with a rate of 19.8 μmol h−1 g−1 in the gas-solid reaction system, achieving an apparent quantum yield (AQY) of 1.33% at 365 nm, outperforming most of the reported photocatalysts. The ferroelectric hysteresis loop, piezoresponse force microscopy (PFM) and ns-level time-resolved fluorescence spectra uncover that the outstanding CO2 photoreduction activity of SrBi4Ti4O15 mainly stems from the strong ferroelectric spontaneous polarization along [100] direction, which allows efficient bulk charge separation along opposite direction. DFT calculations also disclose that both electrons and holes show the smallest effective masses along a axis, verifying the high mobility of charge carriers facilitated by ferroelectric polarization. This study suggests that the traditionally semiconducting ferroelectric materials that have long been studied as ferro/piezoelectric ceramics now may be powerfully applied in the photocatalytic field to deal with the growing energy crisis.]]> Mon 08 Nov 2021 09:54:09 AEDT ]]> Thickness-Dependent Facet Junction Control of Layered BiOIO3 Single Crystals for Highly Efficient CO2 Photoreduction https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:41820 Fri 12 Aug 2022 12:52:30 AEST ]]> Generation of nanoparticle, atomic-cluster, and single-atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc-air batteries https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:36381 2 , which was attributed to the high reactivity and stability of isolated single Co atoms. Our findings open up a new avenue to regulate the metal particle size and catalytic performance of MOF derivatives.]]> Fri 03 Apr 2020 16:59:31 AEDT ]]>